Showing posts with label fiber optics. Show all posts
Showing posts with label fiber optics. Show all posts

Friday, April 30, 2010

A Bit About Broadband

Through recent Twitter wanderings I happened across an interesting group who have identified a strategically important cause and dedicated themselves to advancing it. Broadband is a term commonly discussed but its affect on our society undervalued.

Broadband for America is raising awareness of precisely how broadband, and the need for improvements in it, enable many things, not the least of which is rapid growth in our economy. To follow Broadband for America on Twitter click here @broadband4us.


I feel strongly about the need for ever-improving broadband and I am convinced the Internet access we are accustomed to is just the beginning...the World Wide Web is truly an infant.  There is good reason to believe that advanced technology and policy will coalesce with our creative population to generate outstanding economic and social returns for generations and broadband will be central to success.

The following is an excerpt from a recent Broadband for America post the touches on some very important developments:

A Bit About Broadband

I have a soft spot for unsung heroes and today’s post highlights one that virtually everyone takes for granted. I’ll get to that in a bit.
Broadband for America is on a mission to bring high speed Internet to every individual and business in the country. This is a lofty and virtuous goal. At the risk of sounding alarmist, a goal so important that failure to make significant progress threatens America’s greatest strength, that of innovation-driven commerce.

Innovation and Small Business

Broadband, computer technology, the World Wide Web, and courage combine to expand the arena for all to enter. Efficient and frugal exchange is a leveler; an opportunity to unleash creativity and innovation, to establish an audience, to test a new idea or market, to bring value and prosper; a mechanism to engage the talents of an entire population and restore economic strength at a time when we most need more men, and women, in the arena.


Thursday, February 11, 2010

Coincidence...or Convergence?

Did you notice the recent announcement from Google about edging into the Internet Service Provider (ISP) space? This is earth-shattering stuff...viewed alongside other recent announcements from the tech world an interesting image of our near future emerges.

With this experiment, Google is giving incumbent ISP’s like AT&T, Qwest, Comcast, Cox and others a significant nudge in the direction of better, faster, richer, open internet service provision. A broadband notion that has been hotly debated but otherwise constipated for decades.

What This Could Mean For Us

The Google experiment targets between 50,000 and 500,000 people in the US with internet speeds of 1,000 Mbps (1Gigabit per second - 1Gbps)...roughly 100 times faster than most internet subscribers receive today...promising a reasonable price. From the announcement, Google divulges three key elements to their initiative. In their words:

  • Next generation apps: Google wants to see what developers and users can do with ultra high-speeds, whether it's creating new bandwidth-intensive "killer apps" and services, or other uses we can't yet imagine.
  • New deployment techniques: They will test new ways to build fiber networks, and to help inform and support deployments elsewhere, they will share key lessons learned with the world.
  • Openness and choice: They will operate an "open access" network, giving users the choice of multiple service providers.

This is really powerful stuff...it places the traditional incumbent ISP business model of slow cable plant deployment with glacial and expensive ratcheting up of internet speeds  in peril. Google’s stance will certainly turn heads and cause sleepless nights for those milking the US customer base for cash while the rest of the globe surges ahead in the bandwidth race.

Google mentions several “killer apps” in their blog including the ability to transfer full length BluRay movie files in under five minutes...enabled by 1 Gbps transfer speeds. Astonishingly fast relative to current DSL and Cable Modem ISP rates.

If we look at what else is happening in the world of technology the story becomes more interesting.

Enabling Technologies

A recent post, “Light Peak and You”, discussed Intel and their activity with emerging  “Light Peak” optical technology. Intel is making fundamental changes to optical circuitry that promise orders of magnitude cost reduction compared to similar telecommunications grade devices.


Why is this a big deal?

Well, you may not recall when USB crept into every computer and peripheral...we hardly noticed it...but all now use USB and benefit as a result. “Light Peak” has the potential to do the same but with orders of magnitude performance enhancement and far greater physical reach. A game changer.

These advancements enable extremely fast data transfer between devices with greater distances (300 feet) than the latest in USB, version 3.0. The new chips are tiny with projected costs low enough to make sense in consumer electronics.

Remarkable performance. The Intel products will enter the market with speeds of 10Gbps and scale to 100Gbps within ten years. Targeting spaces within the home or office, that’s ten to one-hundred times faster than the transmission rates predicted by Google for long haul applications. Comparing these speeds with that of Google’s ISP plan suggests file transfer of the same BluRay sized files in seconds...not minutes.

What isn’t obvious is that the optical fiber Google relies upon for the long haul (intercity and directly to the home )applications is capable of similar speeds...by simply adding high speed transmitting/receiving equipment at the ends of the links. Therefore it’s conceivable to have similar speed on the Google network feeding incredibly rich content, on demand, across great distances, anywhere. Consumer choice.

Connecting the dots

Rumor mills are rife with suggestions that both Sony and Apple are courting Intel and the soon-to-be-released “Light Peak” chips...suggesting that their consumer electronics will soon offer staggering performance.

Lots to think about...lots going on in the world of technology. Some questions to mull over:

  • Is it a coincidence that 3D-HD (larger files than traditional BluRay) was all the rage at the recent Consumer Electronics Show? A technically savvy way to solve digital rights management hurdles and an astounding development for consumers to bring into the home.
  • How rapid is global data growth? The Data Deluge: Economist.com
    • How about Apple’s new iPad...a neat little handheld computer with a killer high resolution screen...what would it take to add a new “Light Peak” chip inside?
    • Would adding new chips to the Apple line of iMac and other desktop computers with cinema quality monitors be too difficult?
    • Sony? Well, they know a thing or two about high definition television...3D-HD production...and distribution of content.

    There are certainly more examples to raise...more dots to connect...but the same conclusion remains. In the end it comes down to an accelerating need for more bandwidth...bigger, faster pipes to carry rapidly expanding volumes of information...in the long-haul...and within the home.

    Google’s project gets at removing a recognized bottleneck in the long-haul networks and encourages traditional players to accelerate their efforts. Once improved, the bottleneck itself will shift from outside to inside the home or building. It seems Intel is preparing for this with “Light Peak” and I suspect their direct customers (consumer electronics suppliers) will quickly follow suit. Ultimately, this means wiring upgrades within the home for applications we can’t even envision today. Evolution.

    Are you familiar with the new eXapath™ system from Homepath Products?

    Coincidence...or convergence?










    The observations and opinions herein are that of the author, cofounder of Homepath Products LLC...with admiration for but otherwise no affiliation with any of the companies mentioned.

    Wednesday, February 10, 2010

    Part 3: Staggering, Remarkable, Stupendous!

    Well, admittedly, it’s not cold fusion, perpetual motion, or antigravity...but this experiment has been worthwhile for the kids and also for Homepath Products.  We’re pleased with results and they confirm our beliefs.

    The experiment we’re running with the help of the kids delivered some interesting information...and an opportunity to learn more with further study.

    For background on this project see the earlier posts, Part 1 and Part 2. The investigation answers an important customer question about how eXapath affects the energy conserving qualities of insulated walls.


    Specifically - ”If that thing (eXapath) is in my wall displacing some insulation, what affect does it have on energy conservation?”

    As described in the earlier posts, our test chamber sits outdoors and was designed to create a large temperature gradient between the warmth contained and the cooler outside air. Using a fully insulated cube (Demilec SEALECTION™ Agribalance sprayfoam insulation provided by USInsulation) with an incandescent light bulb as a heat source, we installed the eXapath™ in-wall cable pathway system within one wall and minimized air infiltration with commonly available firestopping caulk and putty. Doing so emulates a typical home installation (see photo), allowing us to determine the affect the eXapath system has on a fully insulated exterior wall.

    Once the chamber was built and checked to ensure that everything worked properly, we set it outside, allowed it to stabilize, and began to examine how the system reacted with direct exposure to the cold New England weather. Given that insulation serves only to slow down the process of heat transfer we knew that all surfaces would allow some level of heat energy to escape. We predicted that the various materials making up the walls would generate unique surface temperature profiles and the experiment sets out to demonstrate that. To determine the differences we devised a method for logging the surface temperature for three distinct locations on the walls for comparison to the outside air temperature:

    • Intersection of eXapath, insulation and outer sheathing
    • Intersection of insulation and sheathing
    • Intersection of 2 x 6” stud and sheathing

    For temperature readings we scanned (6:00 AM, 2:00 PM, 10:00 PM) the target areas daily on the outside surface of the chamber using a Ryobi Tek4 Professional Infrared (IR) Thermometer. The data was tabulated in a spreadsheet and compared to the internal and external air temperature as shown in the chart below.

    Through the first four weeks of testing (tests ongoing) the internal temperature fluctuated between 75.3 and 102.5 ℉. The blue line on the chart shows the internal temperature.

    During the same period the outside air temperature ranged from a low of 6.0 ℉ to a high of 53.9 ℉. The 100 Watt incandescent light bulb allowed us to drive a consistent level of energy into the test chamber and served to convert that electricity to heat. Consistent heat generation allowed the chamber itself to react to the external temperature...isolating insulation performance to the outside air temperature only. The large difference between the internal and external temperatures provided the strong temperature gradient necessary to force heat transfer to occur between the warm interior and the cool exterior.

    The Bottom Line

    As anticipated, all surface temperatures remained near to but slightly higher than the outside air temperature. It is hard to discern because the readings were all very close, but the lower line on the chart displays:
    • Outside air temperature
    • Surface temperature where eXapath, insulation, and sheathing intersect
    • Surface temperature where insulation and sheathing intersect
    • Surface temperature where 2 x 6” stud and sheathing intersect
    The bottom lines, literally, show that the section of wall where the insulation displacing eXapath system is installed performs as well as sections of wall completely filled with insulation. This confirms the hypothesis that installing the eXapath system in the exterior walls of a sprayfoam insulated structure is not detrimental to the energy conservation of the structure itself. Slight variation was shown by each material but temperature profiles of each construction material combination were very close...almost indistinguishable graphically.


    A Closer Look at the Data

    To assess the relative performance of the various building material combinations we sorted the data table by outside temperature in descending order. Doing so helped to reveal the performance trends more clearly. After that, we compared the variance between the external temperature and the various building material combinations...this step amplified the reported results revealing a bit more about how each material fared relative to the others under test. In essence, the outside temperature records become a reference line (zero) and the temperature difference for all other materials is plotted against the external temperature to highlight performance differences.


    The main finding with the second chart is that temperature variance, compared to external air temperature, falls largely above the blue reference line...slightly higher temperature than the outside air. This is what we expected to see given the large temperature gradient between inside and outside the chamber. In cases where the surface temperatures fell below the blue reference line there is a strong correlation to rising outside temperatures....in these instances we believe the temperature changes of the construction materials lagged behind the more rapidly rising outside air temperature.

    The interesting point, and the primary purpose for running this test, is that the eXapath system shows no real performance degradation despite displacing some of the insulation within the wall.

    Questions Remain

    It should be noted that IR thermometers offer an accuracy of ± 1.5% compared to the actual reading. In addition, the operating range for the thermometer itself ranges from 30 to 122℉. While making measurements, care was taken to keep the temperature of the IR thermometer within the operating range recommended by the manufacturer to maximize accuracy.

    The Experiment Continues


    To confirm the trends revealed in the experiment and support the findings of the IR thermometer we are extending the experiment to verify our findings.

    While having an energy audit performed at our site we asked Chris Rhodes of Right Angle Home Inspections, a Building Analyst certified by The Building Performance Institute (BPI) and certified Level 1 Thermographer, to use her FLIR B-360 Infrared Thermography Camera to evaluate the test chamber. Our hope was to create visual identification of thermal bridging occurring through the test wall of the chamber in order to show differences between building material combinations,

    The photo to the right is an infrared image of the test chamber that reveals "hot spots" or areas where heat energy is leaking out of the chamber. For clarity we've labeled the positions where the eXapath system is installed, where only insulation exists, and where a 2 x 6" stud intersects with the outer plywood sheathing. This image confirms our findings.

    The three small purple patches indicate the position of digital temperature sensors we've added for phase 2 of the experiment. In phase 2 we hope to generate more detailed information to gain a more precise understanding of the differences between each building material combination.
      So the experiment continues...after our "furnace" burned out the kids and I peeled caulk from around the cover seam and removed the heavy lid...it provided the curious sensation of opening a sarcophagus. We added a new 100 Watt light bulb, replaced and resealed the cover, and are ready for phase 2 readings.

      Please check back with us for more updates soon.

      Tuesday, January 26, 2010

      Part 1: Customers Ask Great Questions

      Thoughts on jobs, kids, innovation, entrepreneurship...and our approach to economic recovery.


      While writing this post I stumbled across a New York Times article written by Op-ed Columnist Thomas L. Friedman entitled “More (Steve) Jobs, Jobs, Jobs”. The piece resonated, inspiring me to take a short detour and disclose a bit more about what we’re up to at Homepath Products.

      Friedman discussed federal policy-making concerning job creation through innovation. Paraphrasing, he suggests that the current administration should bolster job creation by stimulating our youth through creativity, innovation and entrepreneurship. “What the country needs most now is not more government stimulus, but more stimulation. We need to get millions of American kids, not just the geniuses, excited about innovation and entrepreneurship again. We need to make 2010 what Obama should have made 2009: the year of innovation, the year of making our pie bigger, the year of ‘Start-Up America.’”

      Friedman continues “to reignite his youth movement, he [President Obama] should make sure every American kid knows about two programs that he has already endorsed: The first is National Lab Day. Introduced last November by a coalition of educators and science and engineering associations, Lab Day aims to inspire a wave of future innovators, by pairing veteran scientists and engineers with students in grades K-12 to inspire thousands of hands-on science projects around the country...The president should also vow to bring the Network for Teaching Entrepreneurship, or NFTE, to every low-income neighborhood in America. NFTE works with middle- and high-school teachers to help them teach entrepreneurship. The centerpiece of its program is a national contest for startups with 24,000 kids participating. Each student has to invent a product or service, write up a business plan and then do it.”
       

      In general I agree with Friedman. More innovation begets opportunity for success; more success stimulates innovation, in turn, growing the pie and fueling economic expansion. He presents some well conceived ideas echoing an industrial era economist named Joseph Schumpeter who espoused “creative destruction” and focused on the importance of entrepreneurs to strong economies. Friedman adds a noteworthy twist...that is to nourish the innovation and entrepreneurship process through exposure during youth.  I find this compelling and believe it may help sidestep the tendency toward risk aversion that sets in with age. This notion parallels what we’re doing in our own small way here at Homepath Products.

      For many reasons I traded in the security of corporate America to pursue this new venture called Homepath Products. One (of many) important goals was to spend more time with family. For years I noticed opportunities slipping away while I focused on career, a universal dilemma faced by all parents and those with aging forebears...a challenge with few good answers...part of life.

      At Homepath Products we innovate, we experiment, we teach, we are a startup and our kids play a vital role in what we do and, perhaps more importantly, why we do it.

      Reflecting on Friedman’s assertion that youth should be energized to nurture creativity and become entrepreneurial consider the following. Our kids also need opportunity to grasp the interconnected nature of things and events, to learn risk taking, and to become aware that they have a voice in matters seemingly beyond their sphere of influence...beneficial lessons for adulthood.

      Many regular readers of this blog know that Homepath Products recently introduced the eXapath™ in-wall cable pathway system. With this innovation we aim to improve how homes are designed and built, complementing energy conservation while preparing the structure itself to change as consumer electronics evolve. Not an easy task when wires within walls compete for the same space as insulation.

      To see where kids come into the picture you must first understand the product.

      Energy Conservation and Upgradeability

      One of the many features of eXapath is that, once installed and hidden by drywall, it can be located using a common density-based stud finder. This benefits the home or building owner by enabling the addition of outlets from floor to ceiling. After generations of occupancy the structure remains prepared to adapt when new consumer electronics come to market...without disrupting the insulation envelope.

      In shallow inside 2x4” framing, outlets can be added from either side of the wall, in effect serving two rooms. Great for speaker wiring, HDTV, Mirror/TV’s, computer wiring, automation, that sort of stuff.

      With deeper outside walls important questions come to light. Today, most exterior walls are built using 2x6” construction. The wall cavities are then completely filled with insulation, except where studs, wires, waste pipes, and electrical boxes reside.

      Picturing the installation in an exterior wall, eXapath sits toward the inside of the cavity, in direct contact with drywall. Viewing the system from above note that eXapath has an “H” shape to accommodate our unique snap-in outlets.

      With a footprint of 3 3/8” square, 2 to 3 inches of space is provided for insulation. Once installed, eXapath becomes a permanent hollow pathway for low voltage cables enabling moves, adds or upgrades at any time.


      Whoa! Did You Say Hollow?

      This is a good example of the great questions customers ask...and how they are asked: 

      ”If that thing is in my wall displacing some insulation, what affect does it have on energy conservation?”

      The short answer is that eXapath does not present a problem with energy conservation...but it’s a complex question that deserves thorough investigation and a more complete response. Getting to that answer is, well, a science project in heat transfer. A look into the second law of thermodynamics. So, we asked ourselves, in addition to a complete answer, what other benefit can come from this investigation?

      Aligning with personal goals the question presents an opportunity for us to bring science out of the class room and into the real world. We’re asking our kids to participate in the exercise in order to help bring practice to much of what they learn in school. We’re involving them in problem definition, design of experiment, measurement, data collection, and analysis. With exposure to an academic project with real world implications, we hope the kids will appreciate that their studies do ultimately prepare them for bigger things. In this case we tie the learning to commonly discussed ideas like energy conservation and sustainability. The students vary in age and academic level but all study the basics including mathematics, global studies, earth science, language arts, etc. They’re actively learning of our interconnected world and often work with abstract problems in homework assignments. Their school teachers bring practice to lessons while reinforcing major points and we hope this magnifies their effort while adding more fun and meaning to the process.

      Get ready kids!

      Please checkout Part 2 of this series: Kids Don’t Suffer Self-Imposed Limits - We Can Learn From Them

      For interim results, skip directly to Part 3: Staggering, Remarkable, Stupendous!

      Tuesday, October 27, 2009

      Bits, Bytes, and Speed...Whoop-de-doo!


      10Gb/s to start...scalable to 100Gb/s, so what?!

      In this age, it seems we’re drawn into a world of digi-speak, constantly inundated with impressive sounding jargon that can leave us baffled. Couple this with sustainability, and the subject matter quickly overwhelms.

      In a recent post, I marveled at the notion of using fiber optics within the home. Intel’s announcement about its “Light Peak” technology buoyed a significant market buzz.

      Their claim of a 10 Gigabit per second (Gb/s) data rate is surely impressive...and technically achievable...

      ...but what does this really mean for us consumers?


      Saturday, October 17, 2009

      Intel's "Light Peak" and You

      Imagine downloading a full length, high definition 3D feature film in several seconds. Picture an entire music library transferred, all of your home’s HD videos exchanged, or a complete hard drive backed up to a remote and safe location . . . instantly. We are heading in that direction, and it will happen well within the life expectancy of most homes being built today.

      To some these claims may seem outlandish, but remember how, just a few short years ago, you marveled at your first low-resolution digital camera, and the space-aged ability to save photographs electronically . . . easily sharing them with friends by way of mailed CDs.

      Fiber in the Home?


      Kudos to Intel for planning beyond next week . . . and for thinking big. To see what I am talking about click here: ”Light Peak to Connect Consumer Devices at Record Speed”

      The recent announcement of Intel “Light Peak” technology refers to an optical fiber that is 125 µm (microns) wide, roughly the thickness of a human hair. This notion of using strands of glass to route high speed signals within your home may impress, or . . . it may panic you.